

SOFTWARE PROJECT MANAGEMENT- R20

Page | 1

UNIT-I:
Conventional Software Management: The waterfall model, conventional
software Management performance.
Evolution of Software Economics: Software Economics, pragmatic software
cost estimation.
Improving Software Economics: Reducing Software product size, improving
software processes, improving team effectiveness, improving automation,
Achieving required quality, peer inspections.
The old way and the new: The principles of conventional software Engineering,
principles of modern software management, transitioning to an iterative process.

The waterfall model: -
Winston Royce introduced the Waterfall Model in 1970.This model has five
phases: Requirements analysis and specification, design, implementation, and
unit testing, integration and system testing, and operation and maintenance. The
steps always follow in this order and do not overlap. The developer must complete
every phase before the next phase begins. This model is named "Waterfall Model",
because its diagrammatic representation resembles a cascade of waterfalls.

1. Requirements analysis and specification phase: The aim of this phase is
to understand the exact requirements of the customer and to document them
properly. Both the customer and the software developer work together so
as to document all the functions, performance, and interfacing requirement
of the software. It describes the "what" of the system to be produced and
not "how. "In this phase, a large document called Software Requirement
Specification (SRS) document is created which contained a detailed
description of what the system will do in the common language.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 2

2. Design Phase: This phase aims to transform the requirements gathered in

the SRS into a suitable form which permits further coding in a
programming language. It defines the overall software architecture
together with high level and detailed design. All this work is documented
as a Software Design Document (SDD).

3. Implementation and unit testing: During this phase, design is
implemented. If the SDD is complete, the implementation or coding phase
proceeds smoothly, because all the information needed by software
developers is contained in the SDD.
During testing, the code is thoroughly examined and modified. Small
modules are tested in isolation initially. After that these modules are tested
by writing some overhead code to check the interaction between these
modules and the flow of intermediate output.

4. Integration and System Testing: This phase is highly crucial as the
quality of the end product is determined by the effectiveness of the testing
carried out. The better output will lead to satisfied customers, lower
maintenance costs, and accurate results. Unit testing determines the
efficiency of individual modules. However, in this phase, the modules are
tested for their interactions with each other and with the system.

5. Operation and maintenance phase: Maintenance is the task performed
by every user once the software has been delivered to the customer,
installed, and operational.

When to use SDLC Waterfall Model?
Some Circumstances where the use of the Waterfall model is most suited are:

 When the requirements are constant and not changed regularly.
 A project is short
 The situation is calm
 Where the tools and technology used is consistent and is not changing
 When resources are well prepared and are available to use.

Advantages of the Waterfall Model: -

 Simple and easy to understand and use
 Easy to manage due to the rigidity of the model. Each phase has specific

deliverables and a review process.
 Phases are processed and completed one at a time.
 Works well for smaller projects where requirements are very well

understood.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 3

 Clearly defined stages.
 Well understood milestones.
 Easy to arrange tasks.
 Process and results are well documented.

Disadvantages of the Waterfall Model: -

 No working software is produced until late during the life cycle.
 High amounts of risk and uncertainty.
 Not a good model for complex and object-oriented projects.
 Poor model for long and ongoing projects.
 Not suitable for the projects where requirements are at a moderate to high

risk of changing. So, risk and uncertainty is high with this process model.
 It is difficult to measure progress within stages.
 Cannot accommodate changing requirements.
 Adjusting scope during the life cycle can end a project.
 Integration is done as a "big-bang. at the very end, which doesn't allow

identifying any technological or business bottleneck or challenges early.

Conventional Software Management Performance: -
Conventional software management in software engineering refers to traditional
practices that are theoretically sound but often tied to outdated technology and
techniques. Here are some key principles and performance aspects:

1. Quality Creation: The quality of software must be measured or quantified,
and mechanisms should be put into place to motivate towards achieving
the goal.

2. Early Delivery: It’s important to give end-products to customers early.
This allows users to interact with the product, providing a more effective
way to identify their real needs.

3. Problem Identification: Before attempting to solve a problem, it’s crucial
to explore all alternatives and not get blinded by an obvious solution.

4. Design Alternatives Evaluation: When requirements are agreed upon,
various architectures and algorithms should be examined and understood.

5. Appropriate Process Model: Each project should select a process that
makes the most sense for that project based on factors like corporate culture,
willingness to take risks, application area, volatility of requirements, and
the extent to which requirements are understood.

6. Code Inspection: Inspecting design details and code is a better way of
identifying errors than testing.

7. Good Management: Good management motivates people to do their best
work. It’s more important than good technology.

In terms of performance, conventional software management practices have
shown that software development is still highly unpredictable. Only about 10%

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 4

of software projects are delivered successfully within initial budget and schedule
estimates. The level of software scrap and rework is indicative of an immature
process. Therefore, there’s a need for continuous improvement in these practices
to increase the success rate of software projects.

Difference between Agile and Waterfall Methodologies

Agile Waterfall
It separates the project development
lifecycle into sprints.

Software development process is
divided into distinct phases.

It follows an incremental approach Waterfall methodology is a sequential
design process.

Agile methodology is known for its
flexibility.

Waterfall is a structure software
development methodology so most
times it can be quite rigid.

Agile can be considered as a
collection of many different
projects.

Software development will be
completed as one single project.

Agile is quite a flexible method
which allows changes to be made in
the project development
requirements even if the initial
planning has been completed.

There is no scope of changing the
requirements once the project
development starts.

Agile methodology, follow an
iterative development approach
because of this planning,
development, prototyping and other
software development phases may
appear more than once.

All the project development phases like
designing, development, testing, etc. are
completed once in the Waterfall model.

Test plan is reviewed after each
sprint.

The test plan is rarely discussed during
the test phase.

Agile development is a process in
which the requirements are expected
to change and evolve.

The method is ideal for projects which
have definite requirements and changes
not at all expected.

In Agile methodology, testing is
performed concurrently with
software development.

In this methodology, the “Testing” phase
comes after the “Build” phase.

Agile introduces a product mindset
where the software product satisfies
needs of its end customers and
changes itself as per the customer’s
demands.

This model shows a project mindset and
places its focus completely on
accomplishing the project.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 5

Agile methodology works
exceptionally well with Time &
Materials or non-fixed funding. It
may increase stress in fixed-price
scenarios.

Reduces risk in the firm fixed price
contracts by getting risk agreement at
the beginning of the process.

Prefers small but dedicated teams
with a high degree of coordination
and synchronization.

Team coordination/synchronization is
very limited.

Products owner with team prepares
requirements just about every day
during a project.

Business analysis prepares requirements
before the beginning of the project.

Test team can take part in the
requirements change without
problems.

It is difficult for the test to initiate any
change in requirements.

Description of project details can be
altered anytime during the SDLC
process.

Detail description needs to implement
waterfall software development
approach.

The Agile Team members are
interchangeable, as a result, they
work faster. There is also no need for
project managers because the
projects are managed by the entire
team.

In the waterfall method, the process is
always straightforward so, project
manager plays an essential role during
every stage of SDLC.

Software Economics: -
Software economics in software project management is a mature research area
that generally deals with most difficult and challenging problems and issues of
valuing software and determining or estimation costs usually involved in its
production. Boehm and Sullivan outline these difficulties and challenges and also
presented how software economics principles can be applied to improve software
design, development, and evolution. Software economics is basically situated at
intersection of information economics and even software design and engineering.
Most of software cost models are generally abstracted into function of five basic
parameters. These parameters are given below:

1. Size – Size is generally measured or qualified in terms of number of source
instructions or in SLOC (Source line of code) or number of function points
required to realize desired capabilities. The size of end product or result is
required to develop or create required functionality.

2. Process – The process is steps that are used to guide all of activities and
produce end products, in particular ability and capability of process to

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 6

avoid or ignore activities that are not adding any value. It also supports
heading towards the target or goal and eliminate activities that are not
essential or important.

3. Personnel – The capabilities of personnel of software engineering in

general, and particularly their experience with issues or problems regarding
computer science and issues regarding application domain of project. It
emphasizes on team and responsibilities of team.

4. Environment – It is simply made of various tools and techniques and

automated procedures that are available and used to support software
development and effort in an efficient way.

5. Quality – The required quality along with its features, performance,

reliability, scalability, portability, usability, user interface utility,
adaptability, and many more.

Pragmatic Software Cost Estimation: -
Pragmatic software cost estimation is a practical approach to predicting the
amount of effort, time, and resources required to develop a software project. It
involves using realistic methods and models to provide a reliable estimate of the
costs associated with software development.
Here are some commonly used models in pragmatic software cost estimation:

1. COCOMO (Constructive Cost Model): This model uses a basic formula
to estimate the effort and duration of a project based on the size of the
software, which is usually measured in lines of code or function points.

2. Function Point Analysis: This method measures the functionality
provided by the software, independent of the technology used for
implementation. It considers the user’s point of view and the functionalities
that are visible to the user.

3. Feature Points: This method is similar to function point analysis but also
takes into account the complexity of the software, making it suitable for
systems software.

4. Use Case Points: This method estimates the effort based on use cases,
which describe interactions between the software and its users.

5. Parametric Estimating: This method uses statistical modelling to develop
a cost estimate. It involves identifying the key cost drivers, collecting data
from past projects, and using this data to predict future costs.

These models are used because they provide a systematic and objective way to
estimate the cost of a software project. They help in planning, monitoring, and

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 7

controlling the project’s progress, ensuring that the project is delivered on time
and within budget.

Detailed Concept of Pragmatic Software Cost Estimation: -

Pragmatic software cost estimation is a practical approach to predicting the
amount of effort, time, and resources required to develop a software project. It
involves using realistic methods and models to provide a reliable estimate of the
costs associated with software development.
Here are some commonly used models in pragmatic software cost estimation:

1. COCOMO (Constructive Cost Model)
2. Function Point Analysis
3. Feature Points
4. Use Case Points
5. Parametric Estimating

1. COCOMO (Constructive Cost Model)

The Constructive Cost Model (COCOMO) is a procedural cost estimate model
for software projects that was created by Barry Boehm in the 1970s. It’s often
used to reliably predict various parameters associated with a project, such as
size, effort, cost, time, and quality. COCOMO is a regression model based on
the number of lines of code (LOC) and is used to predict the effort required
for the project, total project cost, and scheduled time for the project.
COCOMO has three versions: Basic, Intermediate, and Detailed:

i. Basic COCOMO Model: This is the simplest version of the model and
is used for projects that are relatively small and straightforward. The
effort is measured in person-months and is dependent on kilo-lines of
code.

ii. Intermediate COCOMO Model: This model takes into account a set
of cost drivers that have an impact on project cost.

iii. Detailed COCOMO Model: In this model, the effort is calculated as a
function of program size and a set of cost drivers given according to
each phase of the software life cycle. The five phases of detailed
COCOMO are: plan and requirement, system design, detailed design,
module code and test, and integration and test.

Different models of COCOMO have been proposed to predict the cost
estimation at different levels, based on the amount of accuracy and correctness
required. All of these models can be applied to a variety of projects, whose
characteristics determine the value of the constant to be used in subsequent
calculations.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 8

In COCOMO, projects are categorized into three types: Organic, Semi-
detached, and Embedded:

I. Organic: A software project is said to be an organic type if the team
size required is adequately small, the problem is well understood and
has been solved in the past, and also the team members have a nominal
experience regarding the problem.

II. Semi-detached: A software project is said to be a Semi-detached type
if the vital characteristics such as team size, experience, and knowledge
of the various programming environment lie in between that of organic
and Embedded.

III. Embedded: A software project requiring the highest level of
complexity, creativity, and experience requirement fall under this
category.

These models help in planning, monitoring, and controlling the project’s
progress, ensuring that the project is progressing according to the procedure
and taking corrective action, if necessary.

2. Function Point Analysis Model: -
Function Point Analysis (FPA) is a method used in pragmatic software cost
estimation to measure the functionality provided by a software system. It
quantifies the amount of business functionality an information system
provides to a user and is independent of the technology used to implement it.
FPA is based on the user’s point of view and measures the functionalities that
are visible to the user. The main goal of FPA is to provide a normalized
measure for software that allows comparison across projects and technologies.
The process of FPA involves the following steps:

i. Identify the functional user requirements: This includes all the
functionalities that the user expects from the software system.

ii. Classify the functions: The functions are classified into five types:
External Inputs (EI), External Outputs (EO), Inquiries (EQ), Internal
Logical Files (ILF), and External Interface Files (EIF).

iii. Calculate the Unadjusted Function Points (UFP): Each type of
function is assigned a complexity weight (low, average, or high). The
UFP is the sum of the weights of all functions.

iv. Calculate the Value Adjustment Factor (VAF): This is based on 14
general system characteristics (GSCs) that rate the general
functionality of the software. The VAF is calculated as 0.65 + 0.01 *
∑(GSCs).

v. Calculate the Adjusted Function Points (AFP): The AFP is
calculated as AFP = UFP * VAF. This is the final measure of the
functional size of the software.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 9

FPA is widely used because it provides a technology-independent assessment
of the size of a software system, which is necessary for estimating the effort,
cost, and duration of software projects. It also helps in benchmarking and
measuring productivity, estimating resources, and scope management.

3. Feature Points Model: -

The Feature Points model is an extension of the Function Points model,
designed to handle systems software or software that has complex algorithms.
It was developed to address the limitations of Function Points in dealing with
systems where complex processing is more prevalent than data handling.
In the Feature Points model, the functionality of the software is divided into
two categories:

i. Data Function Types: These are similar to those in the Function Points
model and include External Inputs (EI), External Outputs (EO), Logical
Internal Files (LIF), and External Interface Files (EIF).

ii. Algorithmic Function Types: These are unique to the Feature Points
model and include Control Content (CONT), Control Style (STYL), and
Control Structure (STRU).

Each of these function types is assigned a complexity weight (low, average,
or high), and the Unadjusted Function Points (UFP) is calculated as the sum
of the weights of all functions. The Value Adjustment Factor (VAF) is then
calculated based on 14 general system characteristics (GSCs), and the
Adjusted Function Points (AFP) is calculated as `AFP = UFP * VAF`.

The Feature Points model is used in pragmatic software cost estimation
because it provides a more accurate measure of the functional size of systems
software or software with complex algorithms. It helps in planning,
monitoring, and controlling the project's progress, ensuring that the project is
delivered on time and within budget.

4. Use Case Points Model: -

The Feature Points model is an extension of the Function Points model,
designed to handle systems software or software that has complex algorithms.
It was developed to address the limitations of Function Points in dealing with
systems where complex processing is more prevalent than data handling.
In the Feature Points model, the functionality of the software is divided into
two categories:

i. Data Function Types: These are similar to those in the Function Points
model and include External Inputs (EI), External Outputs (EO), Logical
Internal Files (LIF), and External Interface Files (EIF).

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 10

ii. Algorithmic Function Types: These are unique to the Feature Points
model and include Control Content (CONT), Control Style (STYL), and
Control Structure (STRU).

Each of these function types is assigned a complexity weight (low, average,
or high), and the Unadjusted Function Points (UFP) is calculated as the sum
of the weights of all functions. The Value Adjustment Factor (VAF) is then
calculated based on 14 general system characteristics (GSCs), and the
Adjusted Function Points (AFP) is calculated as `AFP = UFP * VAF`.

The Feature Points model is used in pragmatic software cost estimation
because it provides a more accurate measure of the functional size of systems
software or software with complex algorithms. It helps in planning,
monitoring, and controlling the project's progress, ensuring that the project is
delivered on time and within budget.

5. Parametric Estimating Model: -
The Parametric Estimating Model is a method used in software cost
estimation. It involves the use of mathematical algorithms or parametric
equations to estimate the cost of a product or a project.

This model uses regression analysis of a database of two or more similar
systems to develop cost estimating relationships (CERs) which estimate cost
based on one or more system performance or design characteristics (e.g.,
speed, range, weight, thrust).

The basic formula for calculating parametric estimates is:
Cost/Time per Parameter x Parameter Value = Estimated Project Cost/
Time

This model is often used during a project or in the project planning phase. It
applies a formula or algorithm for making these calculations, using the
specific cost or time needed to implement and finish a project or task.

The Parametric Estimating Model, while useful, does have some
limitations:

a. Data Availability: Parametric estimating can be time-consuming and
costly, especially when used for a complex project. The data required
for this model may be unavailable or difficult to obtain. Historical data
may be unavailable or of low quality.

b. Data Accuracy: External data can be skewed and difficult to verify.
Without accurate data, the estimates may not be accurate. Many times

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 11

an analyst unknowingly incorporates flawed data into the database,
producing inaccurate Cost Estimating Relationships (CERs).

c. Misleading Statistics: For a variety of reasons, the resulting statistics

can be misleading. This is often due to the constraints imposed by the
amount and quality of the data.

d. Complexity: The model requires a deep understanding of the project

and its parameters. It also requires expertise in statistical analysis and
the ability to develop and validate the mathematical models used.

These models are used because they provide a systematic and objective way to
estimate the cost of a software project. They help in planning, monitoring, and
controlling the project’s progress, ensuring that the project is delivered on time
and within budget.

Reducing Software Product Size: -
Reducing software product size is a significant way to improve the economics of
software development. Here are some strategies that can be used:

1. Component-Based Development: This is a general term for reducing the
"source" language size to achieve a software solution. It involves using pre-built
components to reduce the amount of code that needs to be written.

2. Reuse and Object-Oriented Technology: Reusing existing code and using
object-oriented technologies can help achieve a given system with fewer lines of
human-specified source directives.

3. Automatic Code Production and Higher Order Programming Languages:
Improvements in higher order languages (such as C++, Ada 95, Java, Visual
Basic), automatic code generators (CASE tools, visual modeling tools, GUI
builders), and reuse of commercial components (operating systems, windowing
environments, database management systems, middleware, networks) are all
focused on achieving a given system with fewer lines of human-specified source
directives¹.

4. Managing Scope: Managing the scope of the project and raising the level of
abstraction through component-based technology and service-oriented
architectures are high leverage techniques that make a difference.

5. Large-Scale Scrum (LeSS) Framework: This is a framework for scaling
scrum to multiple teams who work together on a single product. It helps in
delivering value while reducing complexity and waste.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 12

Remember, the goal is to produce a product that achieves the design goals with
the minimum amount of human-generated source material.

Improving Software Processes: -
Improving software processes in Software Product Management (SPM) can be
achieved through various strategies. Here are some tips:

 Planning and Preparation: Before starting the development process, it's
crucial to have a clear plan and prepare all the necessary resources.

 Identify the Problem: Understand the problem that the software product
is supposed to solve.

 Design the Solution: Create a detailed design of the solution that addresses
the identified problem.

 Implement the Solution: Develop the software product according to the
design.

 Test and Deploy: Test the software product thoroughly to ensure it works
as expected, and then deploy it.

 Monitor and Maintain: Continuously monitor the software product's
performance and maintain it to ensure it remains effective.

 Pick the Right SDLC Model: Choose a Software Development Life Cycle
(SDLC) model that best fits the project's requirements.

 Optimize Your Workflow: Streamline the development process to
improve efficiency.

 Manage Code Quality: Ensure the code is clean, efficient, and
maintainable.

 Have a Clear Definition of Done: Define what it means for a task to be
completed.

 Build Communication Practices: Establish effective communication
practices among the team members.

 Establish Clear Development Standards: Set clear standards for the
development process.

 Work with Small Teams and Small Components: This can improve
focus and reduce complexity.

 Limit Your Work in Progress (WIP): This can help to maintain focus and
reduce multitasking.

 Leverage the Lean Approach: This approach focuses on reducing waste
and improving efficiency.

 Adopt Agile Methodologies: Agile methodologies, such as Scrum or
Kanban, can increase collaboration and flexibility.

 Implement Continuous Integration and Delivery: This practice can
improve efficiency and reduce time-to-market.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 13

Remember, the goal is to continuously improve the software development process
to deliver high-quality software products efficiently.

Improving Team Effectiveness: -
Improving team effectiveness in Software Product Management (SPM) is crucial
for the successful delivery of software products. Here are some strategies:

 Break teams into squads or pods with individual responsibilities: This
can help to distribute the workload evenly and ensure that all aspects of the
product are being addressed.

 Create cross-functional collaboration: Encourage different teams to
work together. This can lead to more innovative solutions and can help to
ensure that all aspects of the product are considered.

 Build customer-first processes: Always keep the customer in mind when
making decisions. This can help to ensure that the product meets the needs
and expectations of the customer.

 Foster strong relationships between product, engineering, and
marketing teams: These teams need to work closely together to ensure
that the product is developed and marketed effectively.

 Give your team members ownership: Letting team members make their
own decisions and making them accountable for their work can induce a
sense of responsibility.

 Ensure proper communication: Effective communication is essential for
success. It helps to ensure everyone is on the same page and opportunities
are being leveraged to the fullest.

 Identify your team’s strengths and weaknesses: This can help to assign
tasks more effectively and ensure that each team member is working in an
area where they can excel.

 Team building activities: These can help to improve communication and
trust within the team.

 Use a project management tool: This can help to keep track of tasks and
deadlines, and ensure that everyone knows what they need to do.

 Wholesome work environment: A positive and supportive work
environment can help to improve team morale and productivity.

Remember, the goal is to continuously improve the team's effectiveness to deliver
high-quality software products efficiently.

Achieving Required Quality: -
Achieving the required quality in Software Product Management (SPM) is a
multi-faceted process that involves several key steps:

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 14

 Define Quality Characteristics: Identify the characteristics that define
quality for your product.

 Measure Quality Characteristics: Decide how to measure each of those
quality characteristics.

 Set Quality Standards: Establish standards for each quality characteristic.
 Quality Control: Perform quality control with respect to the standards.
 Identify Quality Issues: Find out the reasons that are hindering quality.
 Management Plan: Have a clear idea about how the quality assurance

process will be carried out through the project.
 Quality Engineering Activities: Quality engineering activities required

should also be set at the beginning along with team skill check.
 Proper Checkpoints: Checkpoints at required intervals should be set.

Peer Inspections: -
Peer inspections, also known as peer reviews, are considered an industry best-
practice for detecting software defects early and learning about software artifacts.
They are composed of software walkthroughs and software inspections and are
integral to software product engineering activities.

In a peer review, co-workers of a person who created a software work product
examine that product to identify defects and correct shortcomings. A review
verifies whether the work product correctly satisfies the specifications found in
any predecessor work product, such as requirements or design documents.

Peer inspections are frequently overhyped as the key aspect of a quality system.
However, they are valuable as secondary mechanisms, but they are rarely
significant contributors to quality compared with other primary quality
mechanisms and indicators, which should be emphasized in the management
process.

The National Software Quality Experiment, evaluating the effectiveness of peer
reviews, finds, "a favourable return on investment for software inspections;
savings exceeds costs by 4 to 1". To state it another way, it is four times more
costly, on average, to identify and fix a software problem later.

Therefore, peer inspections play a crucial role in improving software economics
in Software Product Management (SPM) by reducing software product size,
improving software processes, improving team effectiveness, improving
automation, and achieving required quality.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 15

The Principles of Conventional Software Engineering: -
The principles of conventional software engineering in Software Product
Management (SPM) are guidelines for developing high-quality software products.
Some of these principles are:

1. Make Quality the Top Priority and Quantify It: Quality of software
must be measured or quantified and mechanisms put into place to motivate
towards achieving the goal.

2. Involve the Customer, Prototype, Simplify Design, Conduct

Inspections, and Hire the Best People: Large or high-quality software is
possible. There are several techniques that have been given a practical
explanation to raise and increase and quality includes involving customer,
prototyping, simplifying design, conducting inspections, and hiring good
and best people.

3. Give Products to Customers Early and Get Feedback: It doesn’t matter

how hard we try to learn and know about needs of users during
requirements stage, most important and effective to determine and identify
their real and realistic needs is to give product to users and let them play
with it.

4. Determine the Problem and the Requirements Before Writing Code:

When engineers usually face with what they believe is a problem, they rush
towards offering a solution. But we should keep in mind that before we try
to solve any problem, be sure to explore all alternatives and just don’t get
blinded by obvious solution.

5. Evaluate All Design Alternatives: When requirements or needs are

agreed upon, we must examine and understand various architecture and
algorithms.

6. Use an Appropriate and Correct Process Model: Each and every project

must select an appropriate process that makes most sense for that project
generally on basis of corporate culture, willingness to take risks,
application area, volatility of requirements, and extent to which all
requirements and needs are understood in a good manner.

7. Use Different Languages for Different Phases: Our industry generally

gives simple solutions to large complex problems. Due to his, many declare
that best development method is only one that makes use of notation
throughout life cycle.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 16

8. Minimize or Reduce Intellectual Distance: The structure of software
must be very close enough to a real-world structure to minimize intellectual
distance.

9. Before Tools, Put Techniques: An undisciplined software engineer with a

tool becomes very dangerous and harmful.

10. Get It Right Just Before We Make It Very Faster: It is very easy and
simple to make a program that’s being working run very faster than it is to
simply make a program work fast.

11. Inspect Code: Assessing or inspecting design with its details and code is

most and better way of identifying errors other than testing.

12. Rather Than Good Technology, Good Management Is More Important:
Good management simply motivates other people also to do their work at
best, but there are no universal “right” styles for management.

Principles of Modern Software Management: -
The principles of modern software management in Software Product
Management (SPM) are guidelines for effectively managing software
development projects and teams. Some of these principles are:

1. Agile Methodologies: Agile methodologies like Scrum, Kanban, and Lean
allow development teams to embrace flexibility, adaptability, and
collaborative practices.

2. Continuous Integration and Delivery (CI/CD): By implementing

automated processes for code integration, testing, and deployment,
development teams can achieve faster and more reliable software releases.

3. Embracing DevOps: DevOps promotes collaboration and efficiency in

software management by breaking down silos between development and
operations teams.

4. User-Centric Design: Prioritizing user needs, conducting thorough user

research, and incorporating user feedback can create software solutions
that deliver exceptional user experiences.

5. Lean Software Development: This principle focuses on eliminating waste

and maximizing value.

6. Operations: Services need management.

For Free Resources Visit : aajhub.in , HeyTopper.in

SOFTWARE PROJECT MANAGEMENT- R20

Page | 17

7. Monitoring: Services also need to be monitored.

8. Eventing and Alerting: What happens if the monitoring solution detects
a problem?

9. Collaboration: A first responder is the first person, but probably not the

only person, who helps to resolve an incident.

10. Root Cause Analysis: To prevent an incident from reappearing, the
contributing factors must be assessed.

For Free Resources Visit : aajhub.in , HeyTopper.in

